
Macintosh Technical Notes

Macintosh
Technical Notes

Developer Technical Support
NuBus Interrupt Latency
(I Was a Teenage DMA Junkie)
Hardware M.HW.NuBusLatency

Revised by: Cameron Birse October 1989
Written by: Cameron Birse, Mark Baumwell, & Rich Collyer December 1988

This Technical Note discusses NuBus™ interrupt latency, and why, contrary to popular
belief, the Macintosh is not a real-time machine.
Changes since December 1988: Changed sample code to defer cursor rendering to a
deferred task rather than a “pseudo-VBL” task.

The Macintosh is not a real-time machine. The Macintosh does not support DMA. There
are many variables in the Macintosh that make it impossible to deterministically figure out
exactly when things are going to happen. Despite these facts, there are those who must push
the envelope. For these courageous adventurers, we provide the following information in
the hope that it speeds your journey.

According to empirical evidence gathered by Apple engineering, typical NuBus to
Macintosh transaction times fall in the 800 nanosecond to 1 microsecond range. Although
the NuBus specification points to faster accesses, you should consider these times realistic
since there is always some overhead. Synchronizing the NuBus and Macintosh clocks, for
example, can cost a NuBus cycle.

One technique that can help optimize NuBus transfers is implementing bus locking. The bus
can be locked for a small set of transactions (we recommend a maximum of four transfers),
then unlocked for rearbitration. In order to allow fairness, it is important to lock the bus for
as short a time as possible.

All processor interrupts and slot interrupts may be held off for various amounts of time by
different parts of the system, so you must never count on instant interrupt response. To help
deal with these delays, you should consider your data rate and include ample buffering on
your card for your data. The following are just a few of the many system variables which
affect interrupt latency:

• Floppy disk accesses turn off interrupts for “significant” (read milliseconds)
amounts of time. For instance, some disk accesses (i.e., block reads) can
disable interrupts for as much as 15 milliseconds. Inserting a blank floppy disk
turns off interrupts for up to 25 milliseconds.

Developer Technical Support October 1989

Macintosh Technical Notes

• Formatting a floppy disk turns off interrupts for up to 300 milliseconds.
• LocalTalk accesses can disable interrupts for up to 22 milliseconds.
• Assuming your interrupt handler is going to want to access your card

immediately, there is also the arbitration for mastership of the bus, which could
be in use at the time, and in the worst case, lock the bus, keeping you from
accessing your card.

Developer Technical Support October 1989

Macintosh Technical Notes

• All slot interrupts, including slot VBL interrupts, hold off other slot interrupts.
This means another card’s interrupt routine (installed via _SIntInstall) or
a slot VBL interrupt routine (installed via _SlotVInstall) runs to
completion with interrupts of the slot level and below disabled. VBL tasks may
be of varying length, since applications, as well as drivers, can and do, install
VBL tasks.

• Cursor updating (performed during slot VBL time) time ranges from around
700 µSec - 900 µSec for one-bit to eight-bit depth. Since this is done at slot
VBL time, it holds off all other slot interrupts until it is finished.

Warning: The performance figures cited in this Note are based on current
Macintosh models; they are not guaranteed to remain the same in
future machines.

The following code lets you defer the cursor updating routine by having it run
as a deferred task. This change means that the actual cursor rendering is
performed with interrupts enabled, which allows the occurrence of other
interrupts. It should be noted that there is a slightly visible flickering of the
cursor as a result of using this technique.

*** Defer Cursor
*** This program defers the cursor updating that normally happens
*** during slot VBL time. Since the cursor updating can take as
*** long as 900µSec, and holds off other slot interrupts, it is
*** handy to be able to defer the updating to a more civilized time.
*** This program replaces the normal jCrsrTask with a routine that
*** installs the real jCrsrTask routine as a deferred task.

*** Build commands:

*** asm DeferCrsr.a -lo DeferCrsr.a.lst -l
*** link DeferCrsr.a.o -o DeferCrsr

STRING ASIS
PRINT OFF
INCLUDE 'Traps.a'
INCLUDE 'SysEqu.a'
PRINT ON

******************************** Entry *******************************

Entry MAIN

bra.s Entry2

****************************** MyDefTask *****************************

TaskBegin
MyDefTask

DC.L 0 ;qLink (handled by OS)
DC.W 0 ;qType (equ 7, find this value in MPW AIncludes)
DC.W 0 ;dtFlags (reserved, don't mess with 'em)
DC.L 0 ;dtAddr (pointer to actual routine to be performed)
DC.L 0 ;dtParm (optional parameter, this example doesn't use it)

Developer Technical Support October 1989

Macintosh Technical Notes

DC.L 0 ;dtReserved (should be zero, DC.L 0 takes care of that)

SysCrsrTask
DC.L 0

***************************** MyjCrsrTask ****************************

MyjCrsrTask
movem.l a0/d0,-(sp)
lea MyDefTask,a0 ;point to our deferred task element
move.l SysCrsrTask,dtAddr(a0) ;set up pointer to routine
move.w #dtQType,dtType(a0) ;set queue type
_DTInstall ;install the task
movem.l (sp)+,a0/d0
rts

TaskEnd

******************************** Entry2 ******************************

TaskSize EQU TaskEnd-TaskBegin

Entry2
move.l #TaskSize,d0 ;TaskSize = Deferred task element, room for

; a pointer (to original jCrsrTask), and
;our jCrsrTask

_NewPtr ,SYS,CLEAR ;make a block in the system heap
bne.s Abort ;no room at the Inn, head for the manger
move.l a0,a2 ;got a good pointer, keep a copy
move.l a0,a1 ;a0 = source, a1 = destination for

; BlockMove
lea MyDEFTask,a0 ;copy the task, etc. into the system heap
move.w #TaskSize,d0
_BlockMove

lea dtQElSize(a2),a0 ;move original jCrsrTask pointer into our
move.l jCrsrTask,(a0) ; pointer holder
lea dtQElSize+4(a2),a0 ;replace jCrsrTask pointer with a pointer
move.l a0,jCrsrTask ; to our jCrsrTask

abort rts ;all's well that ends…

END

• Note, as an aside, that while using MacsBug, interrupts are disabled.

Developer Technical Support October 1989

Macintosh Technical Notes

In summary, you cannot depend on real-time performance when transferring data between NuBus and the Macintosh. It is important to provide
sufficient buffering on the card to allow for the variance in interrupt latency. Driver calls can be used to determine the amount of data available
to be transferred, and transfers can be made on a periodic basis.

Remember too, since the entire system is so heavily interrupt-driven, it is very unfriendly for anyone to disable interrupts and take over the
machine for long periods of time. Doing so almost always results in a sluggish user interface, something which is usually not well received by
the user.

Further Reference:
• Inside Macintosh, Volume V, The Device Manager
• Inside Macintosh, Volume V, The Vertical Retrace Manager
• Macintosh Family Hardware Reference
• Designing Cards and Drivers for the Macintosh II and Macintosh SE

NuBus is a trademark of Texas Instruments

Developer Technical Support October 1989

